Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.714
1.
Daru ; 32(1): 263-278, 2024 Jun.
Article En | MEDLINE | ID: mdl-38683491

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Antineoplastic Agents , Cell Proliferation , Histone Deacetylase Inhibitors , Hydroxamic Acids , Molecular Docking Simulation , Phenanthrolines , Humans , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Dynamics Simulation , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/chemistry , Apoptosis/drug effects
2.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Article En | MEDLINE | ID: mdl-38647213

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Aldose-Ketose Isomerases , Antimalarials , Fosfomycin , Hydroxamic Acids , Multienzyme Complexes , Plasmodium falciparum , Fosfomycin/pharmacology , Fosfomycin/analogs & derivatives , Fosfomycin/chemistry , Aldose-Ketose Isomerases/antagonists & inhibitors , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Multienzyme Complexes/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/enzymology , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Catalytic Domain , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism
3.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38598312

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Humans , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Escherichia coli/drug effects , Escherichia coli/enzymology , Crystallography, X-Ray , Drug Synergism , Hep G2 Cells , Models, Molecular , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemical synthesis , Zinc/chemistry
4.
Bioorg Chem ; 146: 107247, 2024 May.
Article En | MEDLINE | ID: mdl-38493635

The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.


Hydroxamic Acids , Urease , Allosteric Site , Catalytic Domain , Enzyme Inhibitors/chemistry , Hydroxamic Acids/chemistry , Kinetics , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Cinnamates/chemistry
5.
SAR QSAR Environ Res ; 35(2): 157-179, 2024 Feb.
Article En | MEDLINE | ID: mdl-38346125

A Disintegrin and Metalloproteinase 17 (ADAM17), a Zn2+-dependent metalloenzyme of the adamalysin family of the metzincin superfamily, is associated with various pathophysiological conditions including rheumatoid arthritis and cancer. However, no specific inhibitors have been marketed yet for ADAM17-related disorders. In this study, 94 quinolinyl methoxyphenyl sulphonyl-based hydroxamates as ADAM17 inhibitors were subjected to classification-based molecular modelling and binding pattern analysis to identify the significant structural attributes contributing to ADAM17 inhibition. The statistically validated classification-based models identified the importance of the P1' substituents such as the quinolinyl methoxyphenyl sulphonyl group of these compounds for occupying the S1' - S3' pocket of the enzyme. The quinolinyl function of these compounds was found to explore stable binding of the P1' substituents at the S1' - S3' pocket whereas the importance of the sulphonyl and the orientation of the P1' moiety also revealed stable binding. Based on the outcomes of the current study, four novel compounds of different classes were designed as promising ADAM17 inhibitors. These findings regarding the crucial structural aspects and binding patterns of ADAM17 inhibitors will aid the design and discovery of novel and effective ADAM17 inhibitors for therapeutic advancements of related diseases.


Hydroxamic Acids , Quantitative Structure-Activity Relationship , ADAM17 Protein , Models, Molecular , Hydroxamic Acids/chemistry
6.
J Med Chem ; 67(3): 2066-2082, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38261411

In this work, a series of multitargeting histone deacetylase (HDAC) inhibitors capable of regulating the signal transduction between RAS protein and downstream effectors were obtained by introducing a zinc-ion-binding group into the framework of rigosertib via different linkers. Among them, two representative compounds, XSJ-7 and XSJ-10, not only showed stronger antiproliferative activity against many types of cancer cells including solid tumor cells but also presented more potent inhibition on different subtypes of HDAC than suberoylanilide hydroxamic acid (SAHA). Significantly, XSJ-10 presented moderate pharmacokinetic behaviors and showed stronger antitumor activity than oxaliplatin, SAHA, and rigosertib in the HT-29 xenograft mouse models without significant systemic toxicity. Research on the anticancer mechanism of XSJ-10 revealed that it can effectively induce the apoptosis of cancer cells and suppress the tumor by strongly inhibiting the RAS-RAF-MEK-ERK signaling pathway and the acetylation level of HDAC3.


Antineoplastic Agents , Glycine/analogs & derivatives , Histone Deacetylase Inhibitors , Sulfones , Humans , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Cell Line, Tumor , Cell Proliferation , Vorinostat/pharmacology , Apoptosis , Antineoplastic Agents/pharmacology
7.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Article En | MEDLINE | ID: mdl-38296560

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Antineoplastic Agents , Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Drug Evaluation, Preclinical , Histone Deacetylases/metabolism , Antineoplastic Agents/pharmacology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Machine Learning , Repressor Proteins
8.
Anticancer Agents Med Chem ; 24(1): 18-29, 2024.
Article En | MEDLINE | ID: mdl-37957868

Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.


Antineoplastic Agents , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Neoplasms/drug therapy , Coumarins/pharmacology , Coumarins/chemistry , Histone Deacetylases/metabolism , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
9.
Biotechnol J ; 19(1): e2300232, 2024 Jan.
Article En | MEDLINE | ID: mdl-37975165

Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.


Chlamydomonas reinhardtii , Histone Deacetylase Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Vorinostat , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Histone Deacetylases/metabolism , Transgenes/genetics
10.
Eur J Med Chem ; 265: 116042, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38141287

Dual-targeting anticancer agents 4-29 are designed by combining the structural features of purine-type microtubule-disrupting compounds and HDAC inhibitors. A library of the conjugate compounds connected by appropriate linkers was synthesized and found to possess HDACs inhibitory activity and render microtubule fragmentation by activating katanin, a microtubule-severing protein. Among various zinc-binding groups, hydroxamic acid shows the highest inhibitory activity of Class I HDACs, which was also reconfirmed by three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore prediction. The purine-hydroxamate conjugates exhibit enhanced cytotoxicity against MDA-MB231 breast cancer cells, H1975 lung cancer cells, and various clinical isolated non-small-cell lung cancer cells with different epidermal growth factor receptor (EGFR) status. Pyridyl substituents could be used to replace the C2 and N9 phenyl moieties in the purine-type scaffold, which can help to improve the solubility under physiological conditions, thus increasing cytotoxicity. In mice treated with the purine-hydroxamate conjugates, the tumor growth rate was significantly reduced without causing toxic effects. Our study demonstrates the potential of the dual-targeting purine-hydroxamate compounds for cancer monotherapy.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cell Line, Tumor , Histone Deacetylases/metabolism , Antineoplastic Agents/chemistry , Histone Deacetylase Inhibitors/chemistry , Microtubules/metabolism , Purines/pharmacology , Hydroxamic Acids/chemistry , Structure-Activity Relationship , Cell Proliferation
11.
Eur J Med Chem ; 265: 116057, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38142511

Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.


Histone Deacetylase Inhibitors , Histone Deacetylases , Histone Deacetylase 6 , Molecular Docking Simulation , Histone Deacetylases/metabolism , Histone Deacetylase Inhibitors/chemistry , Histones/metabolism , Hydroxamic Acids/chemistry
12.
Eur J Med Chem ; 265: 116055, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38134748

The bacterial infection mediated by ß-lactamases MßLs and SßLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MßLs and SßLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MßLs (NDM-1, IMP-1) and SßLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 µM (except 1a and 1d on SßLs, IC50 > 50 µM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 µM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 µM, is a time- and dose-dependent inhibitor of both MßLs and SßLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MßLs and E. coli-SßLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MßLs and MßLs, in combating antibiotic-resistant bacteria.


Serine , beta-Lactamases , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Escherichia coli , Microbial Sensitivity Tests , Serine/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology
13.
J Med Chem ; 66(19): 13821-13837, 2023 10 12.
Article En | MEDLINE | ID: mdl-37782298

Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.


Histone Deacetylase Inhibitors , Oxadiazoles , Histone Deacetylase 6/metabolism , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Zinc/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry
14.
Eur J Med Chem ; 262: 115879, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37875056

Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.


Antineoplastic Agents , Neoplasms , Humans , Histone Deacetylase Inhibitors/chemistry , Hydroxamic Acids/chemistry , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/genetics
15.
Arch Pharm Res ; 46(9-10): 795-807, 2023 Oct.
Article En | MEDLINE | ID: mdl-37777709

Indazole-based HDAC6 inhibitors with novel zinc-binding modifications were synthesized and evaluated to determine their potential to inhibit HDAC6. The analogs were subjected to a histone deacetylase (HDAC) enzyme assay, which led to identification of compounds 3a and 3b. Both compounds demonstrated higher potency and selectivity as HDAC6 inhibitors with IC50 values of 9.1 nM and 9.0 nM, respectively, and highlighted the importance of the hydroxamic acid moiety for binding to Zn2+ inside the catalytic pocket of HDAC enzymes. In the neuroblastoma SH-SY5Y cell line, both compounds efficiently acetylated α-tubulin but not histone H3 at a low concentration of 0.5 µM. Moreover, compounds 3a and 3b effectively reversed the deacetylation of α-tubulin caused by methamphetamine in the SH-SY5Y cell line, suggesting the potential usefulness of HDAC6 selective inhibition in restoring blood brain barrier integrity by reversing methamphetamine-induced deacetylation.


Histone Deacetylase Inhibitors , Neuroblastoma , Tubulin , Humans , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Tubulin/metabolism
16.
Bioorg Med Chem ; 92: 117437, 2023 09 07.
Article En | MEDLINE | ID: mdl-37563016

Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities. Meanwhile, 12a showed good antiproliferative activities against four tumor cell lines. Further studies showed 12a works through blocking cellular cycle, inducing apoptosis and inhibiting colony formation. In addition, 12a has suitable physicochemical properties and high liver microsomal metabolic stability. Importantly, compound 12a was found to exhibit significant antitumor efficacy in vivo, thus warranting it as a promising tubulin/HDAC dual inhibitor for further development.


Antineoplastic Agents , Tubulin Modulators , Tubulin Modulators/pharmacology , Hydroxamic Acids/chemistry , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Tubulin/metabolism , Cell Proliferation , Cell Line, Tumor , Histone Deacetylase Inhibitors , Histone Deacetylases/metabolism
17.
SAR QSAR Environ Res ; 34(8): 619-637, 2023.
Article En | MEDLINE | ID: mdl-37565331

The HDAC6 (histone deacetylase 6) enzyme plays a key role in many biological processes, including cell division, apoptosis, and immune response. To date, HDAC6 inhibitors are being developed as effective drugs for the treatment of various diseases. In this work, adequate QSAR models of HDAC6 inhibitors are proposed. They are integrated into the developed application HDAC6 Detector, which is freely available at https://ovttiras-hdac6-detector-hdac6-detector-app-yzh8y5.streamlit.app/. The web application HDAC6 Detector can be used to perform virtual screening of HDAC6 inhibitors by dividing the compounds into active and inactive ones relative to the reference vorinostat compound (IC50 = 10.4 nM). The web application implements a structural interpretation of the developed QSAR models. In addition, the application can evaluate the compliance of a compound with Lipinski's rule. The developed models are used for virtual screening of a series of 12 new hydroxamic acids, namely, the derivatives of 3-hydroxyquinazoline-4(3H)-ones and 2-aryl-2,3-dihydroquinazoline-4(1H)-ones. In vitro evaluation of the inhibitory activity of this series of compounds against HDAC6 allowed us to confirm the results of virtual screening and to select promising compounds V-6 and V-11, the IC50 of which is 0.99 and 0.81 nM, respectively.


Histone Deacetylase Inhibitors , Quantitative Structure-Activity Relationship , Histone Deacetylase 6/chemistry , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Vorinostat , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry
18.
Chem Biol Drug Des ; 102(6): 1367-1386, 2023 12.
Article En | MEDLINE | ID: mdl-37641461

Phthalimides are valuable for synthesis and biological properties. New acetamides 3(a-c) and 4(a-c) were synthesized and characterized as precursors for novel N-aminophalimides 5(a-c) and 6(a-c). Structures of 4a, 5(a-b), and 6(a-b) were confirmed by single crystal X-ray. Docking studies identified compounds with favorable Gibbs free energy values for binding to histone deacetylase 8 (HDAC8), an enzyme targeted for anticancer drug development. These compounds bound to both the orthosteric and allosteric pockets of HDAC8, similar to Trichostatin A (TSA), an HDAC8 inhibitor. 6(a-c) contain hydroxyacetamide moiety as a zinc-binding group, a phthalimide moiety as a capping group, and aminoacetamide moiety as a linker group, which are important for ligand-receptor binding. ΔG values indicated that compounds 5b, 6b, and 6c had higher affinity for HDAC8 in the allosteric pocket compared to TSA. In vitro evaluation of inhibitory activities on HDAC8 revealed that compounds 3(a-c) and 5(a-c) showed similar inhibitory effects (IC50 ) ranging from 0.445 to 0.751 µM. Compounds 6(a-c) showed better affinity, with 6a (IC50 = 28 nM) and 6b (IC50 = 0.18 µM) showing potent inhibitory effects slightly lower than TSA (IC50 = 26 nM). These findings suggest that the studied compounds hold promise as potential candidates for further biological investigations.


Histone Deacetylase Inhibitors , Hydroxamic Acids , Amino Acids , Histone Deacetylase Inhibitors/chemistry , Hydroxamic Acids/chemistry , Models, Theoretical , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
19.
ACS Chem Biol ; 18(7): 1594-1610, 2023 07 21.
Article En | MEDLINE | ID: mdl-37392419

Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.


Histone Deacetylase Inhibitors , Oxadiazoles , Histone Deacetylase 6/chemistry , Hydrolysis , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/chemistry
20.
J Med Chem ; 66(14): 10080-10091, 2023 07 27.
Article En | MEDLINE | ID: mdl-37463038

In our previous research, a series of phenylsulfonylfuroxan-based hydroxamates were developed, among which compound 1 exhibited remarkable in vitro and in vivo antitumor potency due to its histone deacetylase (HDAC) inhibitory and nitric oxide (NO)-donating activities. Herein, the in-depth study of compound 1 revealed that this HDAC inhibitor-NO donor hybrid could enduringly increase the intracellular levels of acetyl histones and acetyl α-tubulin, which could be ascribed to its irreversible inhibition toward class I HDACs and HDAC6. Structural modification of compound 1 led to a novel phenylsulfonylfuroxan-based hydroxamate 4, which exhibited considerable HDAC6 inhibitory activity and selectivity. Furthermore, compound 4 could inhibit intracellular HDAC6 both selectively and irreversibly. To the best of our knowledge, this is the first research reporting the irreversible inhibition of HDAC6. It was also demonstrated that compared with ACY-241 (a reversible HDAC6 inhibitor in clinical trials), the irreversible HDAC6 selective inhibitor 4 exhibited not only superior anti-multiple myeloma activity but also improved therapeutic index.


Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Histone Deacetylase 6 , Histone Deacetylases/metabolism , Histones , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/chemistry , Protein Isoforms , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry
...